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Space filling design

Select experiments to 
‘explore’ the space, e.g., 
LHS. 

Optimization

Select experiments to 
locate the best alternative, 
e.g., response surface.

Model-based

Select experiments to build 
a model: discover, 
optimize, understand. 

Types of experiments 𝐴
்
→ 𝐵
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Datapoints
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Evaluate experimentModel data using 
Gaussian Process

Select next experiment via
Bayesian optimization

max
𝐱

𝒜(𝜇 𝐱 , 𝜎(𝐱))

• Experiments are expensive

• Can only sample

• (if!) No good existing models
Good for expensive functions.
No prior model required. 
Only scalar outputs used.



Bayesian Optimization for Design of Experiments

Design of 
Experiments

Bayesian 
Optimization 

Expensive Functions

Derivative-Free
Problems

Problem Structure 
Unknown a-Priori

Expensive Evaluations

Only Samples

`Doman 
knowledge
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Design of 
Experiments

Bayesian 
Optimization 

Expensive Functions

Derivative-Free
Problems

Problem Structure 
Unknown a-Priori

Expensive Evaluations

`Doman 
knowledge

Human-in-the-loop

Disambiguate between solutions

Expert opinion to guide optimization

Only Samples
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• Hard in high dimensions.
• No guarantee  that expert solutions are 

selected.
• Static.  

1. Expert creates a dataset 
of ‘promising’ solutions.

Ramachandran et. al 2020, 
Hvarfner et. al 2022
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Ensure expert opinion throughout optimisation.
Humans are not good in continuous or high dimensional settings.
Not too cumbersome / draining to the expert.

• Hard in high dimensions.
• No guarantee  that expert solutions are 

selected.
• Static.  

1. Expert creates a dataset 
of ‘promising’ solutions.

Ramachandran et. al 2020, 
Hvarfner et. al 2022

2. Expert selects a  
solution at each iteration. 

(Gupta et. al 2023, Kanarik
et. al 2023

• Expert makes continuous choices 
throughout.

• Not viable in high dimensions.
• Significant human cost.
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Multi-objective 
optimization! 

Propose alternative solutions at each iteration to the expert:
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Propose alternative solutions at each iteration to the expert:
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Propose alternative solutions at each iteration to the expert:
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47Best function value

Propose alternative solutions at each iteration to the expert:
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48Best spread

Propose alternative solutions at each iteration to the expert:
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49Best multi-objective value

Propose alternative solutions at each iteration to the expert:
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50These are the solutions returned to the expert

Propose alternative solutions at each iteration to the expert:



Our approach
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Initial experiments

Include expert initial design
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How ‘Good’ Do Experts Have 
To Be?
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Benchmark:
• 58 continuous functions
• 16 repetitions
• 48 iterations 
• NSGA-II to solve the multi-

objective problem.

Hypothesize different levels 
of experts.

At Each Iteration…Behavior Type

Select best solution

Select solution with  
maximum utility value 
(BO)

Select best solution
with probability p(Best)

Expert

Trusting

P(Best)

How ‘Good’ Do Experts Have To Be?



How ‘Good’ Do Experts Have To Be?

We conducted further analysis on:

o Different functions

o Dimensionality

o # of alternative solutions

o Stochasticity (noise) 



Human-in-the-loop BO
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Human-in-the-loop BO

Case study 1: Bioprocess Optimization

Case study 2: Reactor Geometry and Operational Optimization

Human-algorithm collaborative Bayesian optimization for engineering systems, T. Savage, et al., Comp. Chem. Eng. 2024
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Human-in-the-loop BO

Case study 1: Bioprocess Optimization

Case study 2: Reactor Geometry and Operational Optimization

But … with LLMs … do we really 
need the human? 
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LLM-in-the-loop BO?
Multi-agent approach: 

1. Describe trends in previous data (historian) 

2. Describes domain knowledge (domain expert)

3. Describe differences in current solutions (differentiator)

4. Pick a solution based on previous guidance (decision-maker)

Open source LLMs and prompt engineering.



LLM-in-the-loop Bayesian optimisation

Domain expert
agent

Differentiator 
agent

Historian 
agent

Decision 
maker agent

Proposed 
experiments

(LLM) Expert 
opinion to guide 

optimization
LLMs 

choice

Bayesian Opt
proposer

LLM-in-the-loop BO?
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LLM-in-the-loop BO?

Works for mathematical 
functions, how about 
real-case studies?



LLM-in-the-loop BO?

10-variable photocatalysis 
optimisation task. But …



LLM-in-the-loop BO?
Not so much (yet!) for molecular property 
prediction …



LLM-in-the-loop BO?
Not so much (yet!) for molecular property 
prediction …

Still work to do!



1. Human-Algorithm collaboration can be 

applied to improve optimization and 

discovery.

2. Considering how humans interact with 

algorithms (may) unlock effective LLM in LLM-

in-the-loop BO. 

Summary



Thank you! 

Preprint on LLM-in-the-loop 

coming soon :) 


