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Outline

Introduction and motivation for investigating model-based design of experiments (MBDoE)

Benchmark development
*  Ground truth CHO model
* Iterative test strategy

Results
* Classical DoE (resolution lll and IV fractional factorial, quadratic response surface)
« DataHow hybrid model + (Latin hypercube, model-based design of experiments)

Conclusions
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Introduction and Motivation

« Key mandate: add value to CMC development activities through data science

 How to get value from models (hybrid or otherwise)?
* Reduction in number or cycles of experiments to get acceptable titer and product quality (PQ)
* Improvement of titer, PQ, reduction of COGS through numerical optimization

* Goal: Speed up learning and optimization cycle through model-based design of experiments
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State of the art: Traditional DoE

Traditional DoE is the standard of practice
Fractional factorial and response surface methodologies (RSM)
Process scientists pick relevant factors and ranges
Design experiments based on classical “canned” designs
Experiments allow for factors to be refined
Higher resolution experiments may be designed for further refinement

Benefits: Causal identification of input-output relationships

Limitations of these models
Limited representation of nonlinearity and dynamics
Input-output relationship ignores mass balance and cell-specific rates
Model uncertainty not directly handled (indirect factor screening)
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Fractional design

Full factorial design

Central composite design

https://www.experimentaldesignhub.com

/blog/advanced-doe-plans-part-1
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Moving to a model-based DoE strategy

Approach within DataHow

« Latin hypercube sampling (LHS) for initial set
« Multi-objective optimization to balance between
uncertainty reduction (explore) and optimization (exploit)

Benefits

* Use of bioreactor mass balances converts problem into a
smoother cell-specific derivative space

* Naturally handles dynamics
* Direct uncertainty description

Unknowns

How do they compare to traditional DoE?
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|deal Empirical Strategy

Does the DataHow hybrid MBDoE outperform

classical DoE in a media optimization setting?

Control:

Res III Sx Modeling Res IV X Modeling 8x Modeling
Fractional and factor Fractional and factor RSM and factor

Factorial Expt reduction Factorial Xp reduction Expt reduction

Numerical Numerical Numerical
Optimization Optimization Optimization

Record final optimized titer at each stage
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|deal Empirical Strategy

Treatment:

DataHow
LHS
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Does the DataHow hybrid MBDoE outperform

classical DoE in a media optimization setting?

Model DataHow 8x Model DataHow
Training MBDoE Expt Training MBDoE

Numerical Numerical
Optimization Optimization

Record final optimized titer at each stage

Model
Training

Numerical

Optimization
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Challenges with Empirical Comparison

« High experimental burden (3 cycles * 8 experiments * 2 arms) for a single comparison

Difficult to study non-ideal behavior
* Analytical and biological variability
* Block effects
« Contamination events

» No access to ground truth, difficult to explain why the models behave the way they do

Solution: Develop a ground truth model that replicates experimental work

* Model does not need to accurately replicate Sanofi cell culture results

* Only needs to capture representative dynamics, nonlinearity, and smoothness
« Model can be used for evaluation of future model-based DoE tools
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Ground Truth Model

Considered a combination of two closely

related models from literature

(Robitaille/Ghorbaniaghdam) modeling mAb <A

production from CHO cells.

Modified to be fed-batch system, include cell
death, and extended to 14 days in order to be

closer to real world cell cultures.
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Ground Truth Model matches literature data

Time (hr) vs X

Time (hr) vs SER
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Ground Truth Model (Modifications)

Modifications required to better reflect

commercial cell culture

« Changing from a batch model to a
bolus fed-batch model

« Cell death based on ammonia and
lactate concentrations.

l o [LAC] [AMM]
Ha = 5 KD + [LAC] KDynm + [AMM]

where
if [AMM] < 4.6 mM then Kl > [AMM],
KDynm > [AMM]
if [LAC] < 52 mM then KI;,. > [LAC|, KI},. > [LAC]

3) 2009, Xing, et al.; Biotechnology Progress
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Actual Empirical Strategy

Does the DataHow hybrid MBDoE outperform

classical DoE in a media optimization setting?

Control:

Res III Modeling Res IV Modeling Modeling
Fractional and factor Fractional and factor and factor
Factorial reduction Factorial reduction reduction

Numerical Numerical Numerical
Optimization Optimization Optimization
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Actual Empirical Strategy

Does the DataHow hybrid MBDoE outperform

classical DoE in a media optimization setting?

Treatment:

DataHow Model DataHow Model DataHow
LHS Training MBDoE Training MBDoE

Numerical Numerical
Optimization Optimization
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Model
Training

Numerical

Optimization
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DoE Evaluations

DoE Parameter Low High

Feeding Start Time (hrs) 24

Basal Glutamine (mM) 0.01

Feed Glutamine (mM) 0.05

Glucose Setpoint (mM) 0.01

Basal Alanine (mM) 0.01

Feed Alanine (mM) 0.05
sanofi

Choice of Parameter Ranges

*  Glucose, glutamine, and alanine had interesting,
nonlinear behavior
« Studied ranges of O - 2x of Gorbaniaghdam

conditions
3122 * Feed was 5x of the media conditions
56 Evaluation Criteria
j65 * (Highest) sampled titer:
. « GTM titer across the batch of 8 experiments

 Model-optimized titer
« Classical/hybrid model trained and optimized
to suggest single optimal run
« GTM titer for that single optimized run
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Results

Overall Results

 Hybrid-balanced approach has

better final titers at each stage of

design
Titer Highest Model
(g/L) Sampled Optimum
Classic 0.179 0.165
Hybrid 0.198 (+11%) 0.211 (+28%)
(Balanced)
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Empty circles are
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Results

Titer vs Glucose Setpoint

Model System Mismatch Analysis

* Glucose setpoint has a very sharp s

peak near the optimum
0.15 A
» Classical models cannot capture
that behavior using quadratic RSM
models

Titer (g/L)

0.05 A

« Hybrid methodology has the
necessary complexity to pick up on
the peak like behavior, resulting in B0,

fl.'l lID 2i0 3I0 4i0 SIO
better experiments. Glucose Setpoint (mM)

=—@— Ground Truth -~ Classic Results -3~ Hybrid Results
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Conclusions

Role of modeling in CMC development for cell culture
* Getto better processes faster

Design of experiments using hybrid models is a rational approach
* Cell-specific rates, mass balance, uncertainty description

Developed a ground truth mechanistic model to evaluate DoE methodologies
 Does not need to replicate in-house processes, just needs to capture smoothness and nonlinearity

Hybrid model-based methodology outperforms classical DoE under the benchmark test

Next steps
* Experimental implementation on assets
* Impact of non-ideal behavior (variability, contamination)
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