

Transforming Process Development with Al-Technologies and a Digital Development Framework

Al-enabled Digital Bioprocessing

Alessandro Butté | CEO DataHow

AI & Advanced Analytics the next Milestone towards Pharma 4.0

Current approaches creating bottlenecks

AI-Technologies democratizing Access to deep process knowledge and the creation of Digital Twins

Transfer Learning

AI-enabled transfer of historical process knowledge across projects and scales to

reduce experimental effort and accelerate development

Hybrid Models (AI)

AI-enhanced models adapted to bioprocessing for accelerated learning & insight with less data

Risk-Based Decision Support

(Bayesian Statistics)

Outcomes & analysis assessments based on probabilities

A Paradigm Shift for Experimental Planning & Design

Traditional Approach: DoE & Statistical Models

Fully dependent on new experimental data & analysis

Not leveraging existing bioprocessing knowledge

No learning from prior project data or insights

Fewer Targeted Experiments: EXPLORE gaps or EXPLOIT potential

Hybrid Models: Bioprocessing knowledge encoded mechanistically

Transfer Learning: transfer relevant historical project data & insights

Harnessed within a Digital Development Cycle

AI-Enabled Digital Bioprocessing Platform

THAT SUPPORTS PROCESS STAKEHOLDERS

TO BUILD THE CORE ELEMENTS OF PROCESS KNOWLEDGE

RECIPES

DATA

MODELS

INSIGHTS

© DataHow Page 6

Design & Execute Shorter, High-Value, Experiment Cycles

Faster time, and lower cost to insight – iterate with supporting insight

- Experimental Designs which are optimized for the capabilities of Hybrid Models to maximise insight with minimal, targeted, experimental data
- Short, agile experimental cycles vs. extensive DoE waves to reduce time and cost to insight and progress

LHS + Hybrid Model vs Classical DOE

Much more with much less

Target R²: 90%

3 level FD – Reduced space – ca. 50 runs

Variable	pH_0	pH_after_switch	T_0	T_after_switch	Glc_feed	Gln_feed
Upper Bound	6.75	6.76	36.6	35.09	4.76	9.46
Lower Bound	7.25	7.46	37.5	35.59	5.66	9.96

Hybrid Model – Full Space – 20 runs

Variable	pH_0	pH_after_swit ch	T_0	T_after_switc h	Glc_feed	Gln_feed
Upper Bound	6	6	36	35	2	6
Lower Bound	8	8	38	38	6	10

Validation Case: Hybrid Model for Cell Cultures

The Bayesian optimization methodology confirms the findings of the first study case

Insilico Hybrid Model with 8 factors

Leverage Historical Data as a Development Asset

Reduce Experimental Effort and Drive Development Efficiency

© DataHow Page 10

Mammalian Clone Selection Transfer Learning

Selected Case: Accelerate Clone Selection via Transfer Learning

Predicting molecule specific behaviour (Molecule - D) with only 3 runs

Model trained on 15 runs of molecules A, B & C + 3 runs of D

- The behaviour of molecule D can be learned effectively from only 3 runs of D and transferred knowledge from molecules A-C.
- Transfer learning can significantly accelerate clone selection process
- The trained model could suggest optimal clone choice & process design

→ IMPACT: Reduction of Runs / Accelerated Development

Transfer learning can also be applied across scales

We have been able to learn and predict large-scale titers with no or only 1 mid-scale run before continuing to pilot scale.

Train AI-Powered Process Models with Confidence

Realise more Insight with Less Experimental Effort

 No-code, guided workflows, making model training and accessible to process scientists

 Use DataHow's transformative Hybrid Modeling technology to maximize insight and learning with minimal experimental effort

Selected Case: Impact of Hybrid Models

Hybrid Models: Stronger CQA understanding with less data and experiments

Bristol Myers Squibb

The Project:

Evaluate the ability of DataHowLab's **Hybrid Models** to accurately predict CQAs compared to industry state-of the-art "black box" models.

The Challenge:

48 (5-liter scale) experiments were designed and conducted by BMS to evaluate the impact of 12 process parameters on 18 product CQAs.

Understanding & Predicting CQAs: Black Box vs Hybrid

of Experiments required to predict CQAs: Black Box vs Hybrid

Bristol Myers Squibb

Mammalian USP

Optimization

Hybrid Models

Stronger CQA Prediction & Control

- On average, Hybrid models were able to predict CQAs +35% better than standard "black box" models
- Hybrid models were able to predict CQA's where "black box" models had no clear understanding even after 48 experiments

More insight, with fewer experiments

- Black box models needed **30 experiments** before they could accurately predict CQA values
- Hybrid models only required 10 experiments to reach the same level of predictive accuracy

Use Advanced Hybrid Models for Key Development Tasks

Democratizing Insight Creation & Use across the Process Lifecycle

ETH zürich

Mammalian USP

Optimization

Hybrid Models

Selected Case: Optimization of Polishing

Bayesian Optimization: an optimal trade-off between knowledge and target gains

The Project:

Evaluate the ability of **DataHowLab's Hybrid Models** to accurately optimize a chromatographic polishing step and achieve optimal process robustness with minimum number of experiments.

The Challenge:

In this insilico example, we emulate the separation of **3 components** with a **gradient chromatography** with a complex definition of selectivity vs buffer composition.

Fast learning of process and uncertainties

- With only 4 runs, the hybrid model was able to learn the complex adsorption behaviour with competition in the presence of buffer gradient
- The Pareto curves supports the users to focus new experiments in promising regions to balance optimization and knowledge gain

More insight, better robustness

- With the Pareto plot, we can easily explore the trade-off between productivity and specifications (e.g., product purity)
- Through the Monte-Carlo analysis, we can improve process robustness, e.g., sensitivity versus peak cutting

A Structured Development Framework across each Stage

Helping Explore and Exploit the Design Space

Cycle 2

VALIDATION

© DataHow

DataHowLab

AI-Enabled Digital Bioprocessing Platform

A BIOPROCESS SOLUTION FOR BIOPROCESSING

No-code tools, applications, and workflows are adapted for each process format, operation, and lifecycle, to serve the needs of bioprocess scientists.

DATA AS A DEVELOPMENT ASSET

Transfer insights across molecules and scales to leverage historical data, minimize experimental effort, and accelerate development timelines.

DIGITAL DEVELOPMENT FRAMEWORK

Users are guided through development gates to maximally exploit the use of embedded AI technologies towards process goals.

DIGITAL TWINS & PROCESS SIMULATION

DataHowLab transforms into a digital twin when its powerful hybrid models are combined with process data. True digital bioprocessing.

SINGLE SOURCE OF PROCESS KNOWLEDGE

DataHowLab champions the democratization of process knowledge across the organisation and process lifecycle by storing and deploying insights from shared datasets, projects, and models.

A DIGITAL AUDIT TRAIL FOR YOUR PROCESS

DataHowLab logs every activity taken within the software, providing a detailed audit trail for tech transfer and filing and end-to-end traceability.

POWERED BY AI TECHNOLOGIES ADAPTED TO BIOPROCESSING

Deploying Al-technologies & solutions

Product roadmap and collaboration opportunities

Available in DHL (Fall 2025)

Available in DHL (End 2026)

Enabling the digital development cycle

Guided for a collaborative and interactive user flow for non-data scientists

Trusted and Deployed by many Key Industry Players

Technology Partners

Academic Partners

Imperial College London

Thank you!

Connect with me:

